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1. Introduction

The vibrations of a one-mass system with two degrees of freedom are mostly described using a
second-order differential equation with a complex dependent variable. The differential equation is
usually linear as is shown in the papers of Dimentberg [1] and Vance [2]. The solution of the
differential equation clarifies the linear phenomena which occur in the system. If in the system
some small nonlinearities exist they are introduced in the differential equation of motion as small
nonlinear terms. In papers [3-5] the various methods for solving differential equations with
complex dependent variable and small nonlinearity are introduced. The solutions obtained
describe the influence of small nonlinearities on the behavior of the system. As is known, in the
real system both weak and also strong nonlinearities act. The motion of the system is described by
a second-order strongly nonlinear complex differential equation. Some special cases of such
differential equations are considered. In [6] the one-frequency solution of a special type of Duffing
equation is obtained. Besides the Duffing type of nonlinearity [7], the Liénard and Rayleigh
systems with complex functions are considered in [8]. The interaction between strong and weak
nonlinearity in a system with complex dependent variable is also discussed in [9]. An approximate
analytic solution procedure is developed for analyzing such a system. The main disadvantage of
the suggested procedures is that they do not give the general solution but are convenient only for
some special cases of nonlinearities and corresponding special initial conditions.
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In this paper the initial conditions are arbitrary but there is a constraint to the differential
equation: the coupling of the differential equation is due to the small nonlinearity. Separating
the strong nonlinear term in the differential equation with complex dependent variable into
real and imaginary parts leads to functions that depend only on one real function and its time
derivative. The real part depends only on a function x(f) and its time derivative x()
and the imaginary part on a function y(¢) and its time derivative y(f). The mathematical model
of the system is

Z41(z,2) = ed(z,2,2%, 2%), (1)

where z = x+1iy is a complex function, z* = x —iy is complex conjugate, i = +/—1 is the
imaginary unit, x and y are real functions of time ¢, z = dz/dz is the first time derivative of the
complex function z, z* = dz*/dz is the first time derivative of the complex conjugate function z*,
Z= dzz/dl2 is the second time derivative of the complex function z, e<1 is a small parameter,
¢ = ¢, +1¢, is the small nonlinear function, and

fE =11 +1if, ()
with
S1=l1GE+224+ ) =11(x, %),
2=/, = 2,1 + 29) = [L,00, ).
The arbitrary initial conditions are
z(0) = z9, 2(0) = 2. 3)

In this paper an approximate analytic solution procedure based on perturbation of the generating
solution is developed. First, the closed form analytic solution of two independent single-degree-of-
freedom systems, which are two decoupled strongly nonlinear second-order differential equations
(e = 01n Eq. (1)), is developed. The trial solution in the form of generating solution is formed and
the differential equation of motion (1) is transformed into the system of four first-order
differential equations. The solution of this system of differential equations represents the solution
of Eq. (1). The suggested procedure is applied to system with strong cubic nonlinearity of Duffing
type. The two-frequency solution is the Jacobi elliptic function. For the general case, an averaging
procedure for solving such differential equations with small nonlinearity is developed. The
method is used for calculation of the vibration properties of a rotor system with pure cubic
nonlinearity and small nonlinearity of van der Pol type.

2. Generating solution

For the case when the small nonlinearity is neglected and ¢ = 0, the differential equation (1)
transforms to

F4f(z,2) =0, 4)

where f(z,2) = f,(x,X) + if,(»,»). It is a strongly nonlinear differential equation. By separating
the real and imaginary parts of the differential equation (4) and substituting z = x + iy into (3) the
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following two independent differential equations are obtained:

X+f1(x,x)=0, x(0)=xp, x(0)= Xy, &)
Y+, =0, p0) =y, #0)=J,. (6)

The solutions of the equations are independent, and have the form
x=x(1,4,0), y=y(B,p), (7)

where ¢ is time, (A, «) are parameters which depend on the initial conditions (5), and (B, f§) are
parameters which depend on the initial conditions (6). Specifically, 4 and B are the
initial amplitudes, and « and f are the initial phase angles. In spite of the fact that (4) is a
strongly nonlinear differential equation, the generating solution is a superposition of
solutions (7), 1.e.,

2= x(1,4,2) + iy(t, B, p). ®)
It represents the closed form solution of Eq. (4) which satisfies constraint (2).

3. Trial solution

Based on the generating solution the trial solution is formed. The following constraints are
introduced:

1. The trial solution has the form of the generating solution and it is
z = x(1, A1), (1)) + 1p(1, B(2), B(1)), )

where A(f),u(f) and B(¢), f(f) are time variable functions. Solution (9) has to satisfy the
differential equation (1) with limitation (2).

2. The first time derivative of (9) has the form of the first time derivative of the generating solution
(8) where 4, o, B, and f are supposed to have constant values

. Ox(1, A1), (1)) . Op(z, B(1), B(2))
= ot +i ot ’ (10)

The additional terms which exist due to the fact that A(¢), a(¢) and B(¢), f(¢) are time dependent

give us a new relation
. 0x . 0Ox ) A
<AaA+°‘aa)+l<BéB+ﬁ6ﬁ>_o' v

3. The time derivative of (10) is

Ezg(mmAmamM4muBmﬁmv‘ 1)

dt ot ot
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Substituting solution (9) the corresponding time derivatives (10) and (12) into (1) lead to

0 0 [ox .0 o\ ‘
(A a_A 6&) (E) +i <B_+ﬁ aﬂ> < > = ey +1e¢h,, (13)

where ¢, = ¢,(x,y,0x/0t,0y/31),p = 1,2.
On separating the real and imaginary parts in (11) and (13) and after some transformation, the
following four first-order differential equations are obtained:

—gRe(¢1+1¢z)/<<aA <§_Z/Z_§>
d:—gRe(d)1+i¢2)/<<<x/ax>a6,4_66a ot
(B
p= ot +io0/ (3 55) 35 5) (2)

By solving Eqs. (14) the functions A(z), a(¢), B(¢), f(¢) are determined, i.e., the exact solution (9).
Unfortunately, obtaining the closed form solution of system (14) is usually impossible. Some
approximation has to be introduced. As the motion is periodic it means that the solutions are also
periodic functions. At this point it is convenient to introduce the averaging of Egs. (14). Solutions
of the averaged first-order differential equations represent the approximate solution of the
differential equation (1).

(14)

4. Strongly nonlinear Duffing equation

Let us consider a special case of the differential equation (1) where the strong nonlinearity is of
Duffing type. The differential equation is

N3 fz 3
2+blz+b3<<zzz> —( . >>=8(¢1+i¢>)2. (15)

The generating solution of the generating equation
N N
2+b1z+b3<<z—zz> —<Z 2Z>>:O (16)

z=Acn(wt + o,my) + iBen(wat + f,my), (17)

18



L. Cveticanin | Journal of Sound and Vibration 284 (2005) 503-512

507

where cn is the Jacobi elliptic function [10] with frequency w; and w,, and modulus 1
and my, respectively. Substituting (17) into (16) and separating the real and imaginary

part we obtain

b3 4?
U)% = b +b3A2, ny =237,
1
by B?
w%:bl—i—b’sz, nmp = 2360 5
2

where due to the initial values the arbitrary parameters 4, B, o, and f satisfy the relations

2 2
xO:Acn<oc,b3Az), yochn<,8,b3B2),
2(by + b34?%) 2(by + b3B%)

, by A? by A?
= —A\/by + b3 A2 ( ,7>d < —,
o PO SI 0y 1 5342 T\ 2y 1 534D
] by B? > ( by B? )
— _B\/b 5B s f,—22 Nan(p—22 ).
o Lo Sn<ﬂ b + 0 B)) b3t + B

The functions sn and dn are also Jacobi elliptic functions [10].
The trial solution is according to (17)

z = A(H)en(y,, my) + 1B(H)en(yy,, my) = Acny 4+ 1Bcny,

(18)

(19)

(20)

where cnj = en(¥,m), cny = en(Yy,mo), Wy = fo o1 di + a(t), my = my(1), Yy = [y wrdi + p(2),
my = my(t). Applying the suggested procedure the four first-order differential equations which

correspond to the differential equation (15) are

_ eenyy Re(¢) +1i¢,)

B cn%w(wl + Aw)) + Awim| cnyy enyy, — orcnyyy(eny + Amjcnyyy,)’
B e(en; + Am eny,y,) Re(¢, + ig,)

o cni//(wl + Aw)) + Awm enyy enyy, — oy enyyyleny + Am) enyyy,)’
_ ecnyy Im(¢; +1¢,)

o cn%w(wg + Bw}) + Bw,ni ey Cly, — 02 Clgyy(cna + Bt cnyy)’

_ 8(C1’12 + Am/z Cn2m) Im((bl + 14’2)
cni//(wz + Bw)) + Bwant ey, Cayy, — 03 Cayy(cna + Brd cnay,)’

Ad

Bp

21)

where () = 0/04, (cn), = O(cn)/y is the derivative with respect to the argument, and (cn),, =

0(cn)/0m is the derivative with respect to the modulus.



508 L. Cveticanin | Journal of Sound and Vibration 284 (2005) 503-512

The averaged differential equations are

ecnyy Re(¢y +1¢,)

A= ,
cni//(col + Aw)) + Awm| enyy ey, — @1 cnyyy(eny + Am) cnlm)>
As= —¢ e(eny + Am) enyy) Re(; +i¢,) s,
cn%w(wl + Aw)) + Aoy enyy enyy, — o) enyyy(eng + Am| cnyy,)
ecnyy Im(¢, +1¢,) S
cn%l//(a)z + Bw}) + Bwant, ey Choym, — w2 Cayy(cny + Brdy cnyyy)
Bﬁ — _ 8(Cn2 + Am/z anm) Im(¢l + 1¢2) (22)

cn%l//(coz + Bw)) + Bw,nty ciay iy — 3 Clayy (Cn + B cinyyy) 2

where () = fé Kimy) f(? K ydy, dy, and Ki(my) and K>(m») are the complete elliptic
integrals of the first kind [10].

For the special case when the nonlinearity is of the pure cubic type (b; = 0), the modulus of the
Jacobi elliptic functions is constant and has the value m; = m; = % The frequency parameter is
w1 = A/by and w, = By/bs3, respectively. Then, the first-order differential equations (22) are
simplified to

ecnyy Re(¢) +1¢,)

A= g
A\/E;(2cni// — cnyyy cnp)
. &cny Re(¢1 + i¢z)
Ao = P 2
A\/E(2cnw — Cnyyy cnyp)
__ ecny Im(; +i¢y)
B./bs (2cn§w — Cnyyy cnp)’
B ecny Im(¢py +1¢h,) (23)

B B\/b_3(2cn§l// — CNyyy cny)’

where the arguments are ¥, = [; Av/b3dt + oft) and y, = [; Bv/b3dt + P(2).

When the strong nonlinearity is zero (b3 = 0) we obtain w; = w» = w = /b1, a value which is
independent of the initial conditions, and m; = m, = 0. The elliptic function cn transforms to a
circular function (cos). The four first-order differential equations (21) transform to

A = —esiny, Re(¢p, +1i¢,), Aé = ecosy, Re(p; +i¢,),

B=—esiny, Im(¢; +i¢,), B = ecosyy, Im(d; +igh), (24)
where , = fotwdt + a(t), Y, = fotcudt + (1), and ¢, and ¢, are functions of x = Acosy,, y =
Bcos,, X = —wAsiny, and y = —wBsiny,. Introducing the averaging procedure the following

four first-order differential equations are obtained:
A= —e(sinyy Re(py +idy)>,  Ad =& cosypy Re(d i),
B=—e(siny,Im(¢, +igy)>, BB =e cosyy, Im(, +ig,) >, (25)
where (- > = [7 [T()dy, ds,.
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5. Example: small nonlinearity of van der Pol type

Let us consider an example when the strong nonlinearity is of pure cubic type and the small
nonlinearity is of van der Pol type. The mathematical model is

*\ 3 £\ 3
z+b3<<zzz> — <Z_22> ) — &Z[1 — p(zz%)], (26)

where p is a constant parameter. According to (23), the first-order differential equations of motion
are

A =¢A(1 — pAcni — pBend)snidnj, (27)
Ad = esny cnydn; A(1 — pA cnf —chn%), (28)
B=iB(l1 —pA cn% —pB cn%) sn% dn%, (29)
Bf = esn, cnp dny B(1 — pA cn% —pB cn%). (30)

Averaging Egs. (28) and (30) and integrating them for the initial conditions
2(0) = o,  (0) = By, (31)

the solutions are o = oy = const., f = f§, = const.
Averaging the Egs. (27) and (29) the following coupled differential equations are obtained:

A B
A i obA? B = —a— pbB? A? 2
ity + pacB-, B pbB° + pacA-, (32)

where @ = {sn}dnj) = (sndn3>, b= (snjcnidni) = {sn3cnidn3), c= {cn?) = (cn3).
Eliminating the variable B in the system of differential equations (32) the following differential
equation is obtained:

A+ A f(A) + eAg(A) + h(4) = 0, (33)

where
1 2b 2b 5 2b*
f(A)__Z<1_E>’ g(A)——2<?+Cl>+2pA <b+z—ac>,
2 2 2 2 2b 2 44 b
hWA) =2A4"|a(a — pbA~) + pA ac—ab—? —p A°b a—a . (34)

The differential equation (33) is a second-order Abel equation. Neglecting the &* terms of second-
order small value &2 and introducing the new function y(4) = A(¢) into (33) leads to the first-order
differential equation

dy . B
qq H/ Dy = —eg(A), (3%5)
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1.€.,
A=2%b+a0d — oA’ (26 +b“jr)ba; ac (36)
Integrating relation (36) for the initial condition 4(0) = A4y, we have
Aio % — exp(eayt), (37)
1.€.,
A= A (38)
VU = (pas 3 fan)) exp(—2ea1) + (pa A3 far)
where
_ a(2b —ac) b (2b — ac)b + a*c? (39)

b 2T b —ac

Eliminating the variable 4 in (32) and using the previously assumed calculating procedure, we
obtain

By

B = .
V(= (pa, B} far) exp(~2eart) + (pa, By far)

(40)

To present the correctness of the suggested analytical procedure a numerical example is
considered. Let us assume that the parameters in the differential equation (26) are b3 =1, p =1
and ¢ = 0.01. For the initial conditions A(0) = 4y = 0.1, B(0) = By = 0.2, o(0) = o9 = /3, and
p(0) = B, = /6 using relations (31), (38), and (40) the analytical solutions x4 — ¢ and y, — ¢ are
plotted in Fig. 1. In the same figure the numerical solutions xy — ¢t and y, — ¢ of Eq. (26) obtained
by applying the Runge—Kutta procedure are plotted. The solutions are compared. It is evident
that the difference between the analytical and numerical solutions is negligible for small parameter
values.

Analyzing Eqgs. (38) and (40) it is concluded that

(1) for (1 — (pazA(z)/al))>O and (1 — (pa, B} /a;))>0 the amplitudes 4 and B increase to a limit
value 4 = B = \/a,/pa,.

(2) for (1 — (pazA /ar))<0and (1 — (pazB%/al))<0 the amplitudes 4 and B decrease to the same
limit value. This limit value is constant and independent of the initial amphtude

(3) for the initial amplitudes, which satisfy the relations (1 — (pazA /a))) =0 and (1-—
(pazB(z) /ap)) = 0, the motion is steady state with constant amplitudes and constant and equal
frequencies w; = w, = y/a1b3/pa,. The motion is described as

1
z= a cnl t a1b3 — 4 oy, = | +icn| ¢ 1b3 /30, . (41)
pay pay 2 pa,
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Fig. 1. The time-history diagrams obtained analytically (x4 — ¢, ¥, — ¢) and numerically (xy — ¢, yy — 0).

This motion is along a closed curve in x — y plane. To illustrate the aforementioned result two
x — y curves for ¢ = 0.01, p = 1, and initial phase angles o9 = n/3 and 5, = n/6 are plotted for
initial amplitudes 49 = By = 0.1 when the previous condition (1) is satisfied and for 49 = By =
0.530745 when condition (3) is satisfied. From Fig. 2 is evident that curve (a) increases and curve
(b) corresponds to the steady-state wise.

For the special case when the initial phases are the same, i.e., o9 = f, or , = o9 + 2K, where K
is the complete elliptic integral of the first kind [10], the motion is periodic and is along a line;

namely
b 1
y=x==£ ﬂcn t M+oco,— . (42)
pa; pa, 2

(The upper sign is for the first initial phase, and the lower for the second initial condition.)
For the case when f, = ayp + K or i, = oy + 3K, the motion is along a symmetric closed curve

y? x> — (a1 /pay) _

(a1/pay) ~ x> +(a1/pay)

(43)

The mathematical model (26) describes the free vibrations of a symmetric nonlinear shaft-disc
system (rotor). Comparing the steady-state motion of the center of the rotor with strong
nonlinearity considered in this paper and the rotor with linear properties (see [11]) it can be
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Fig. 2. The x—y diagram for (26) with b3 = 1, p = 1, ¢ = 0.01, initial phases «y = n/3, , = 7/3, and initial amplitudes:
(a) 4o = By = 0.1, (b) 4y = By = 0.530745.

concluded that in the both cases the trajectories of the rotor center are closed curves, but their
shapes differ.
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