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1. Introduction

The vibrations of a one-mass system with two degrees of freedom are mostly described using a
second-order differential equation with a complex dependent variable. The differential equation is
usually linear as is shown in the papers of Dimentberg [1] and Vance [2]. The solution of the
differential equation clarifies the linear phenomena which occur in the system. If in the system
some small nonlinearities exist they are introduced in the differential equation of motion as small
nonlinear terms. In papers [3–5] the various methods for solving differential equations with
complex dependent variable and small nonlinearity are introduced. The solutions obtained
describe the influence of small nonlinearities on the behavior of the system. As is known, in the
real system both weak and also strong nonlinearities act. The motion of the system is described by
a second-order strongly nonlinear complex differential equation. Some special cases of such
differential equations are considered. In [6] the one-frequency solution of a special type of Duffing
equation is obtained. Besides the Duffing type of nonlinearity [7], the Liénard and Rayleigh
systems with complex functions are considered in [8]. The interaction between strong and weak
nonlinearity in a system with complex dependent variable is also discussed in [9]. An approximate
analytic solution procedure is developed for analyzing such a system. The main disadvantage of
the suggested procedures is that they do not give the general solution but are convenient only for
some special cases of nonlinearities and corresponding special initial conditions.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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In this paper the initial conditions are arbitrary but there is a constraint to the differential
equation: the coupling of the differential equation is due to the small nonlinearity. Separating
the strong nonlinear term in the differential equation with complex dependent variable into
real and imaginary parts leads to functions that depend only on one real function and its time
derivative. The real part depends only on a function xðtÞ and its time derivative _xðtÞ
and the imaginary part on a function yðtÞ and its time derivative _yðtÞ: The mathematical model
of the system is

€z þ f ðz; _zÞ ¼ �fðz; _z; z�; _z�Þ; (1)

where z ¼ x þ iy is a complex function, z� ¼ x � iy is complex conjugate, i ¼
ffiffiffiffiffiffiffi
�1

p
is the

imaginary unit, x and y are real functions of time t, _z ¼ dz=dt is the first time derivative of the
complex function z, _z� ¼ dz�=dt is the first time derivative of the complex conjugate function z�;
€z ¼ d2z=dt2 is the second time derivative of the complex function z, �51 is a small parameter,
f ¼ f1 þ if2 is the small nonlinear function, and

f ðz; _zÞ ¼ f 1 þ if 2 (2)

with

f 1 � f 1ðz þ z�; _z þ _z�Þ � f 1ðx; _xÞ;

f 2 � f 2ðiðz � z�Þ; ið_z þ _z�ÞÞ � f 2ðy; _yÞ:

The arbitrary initial conditions are

zð0Þ ¼ z0; _zð0Þ ¼ _z0: (3)

In this paper an approximate analytic solution procedure based on perturbation of the generating
solution is developed. First, the closed form analytic solution of two independent single-degree-of-
freedom systems, which are two decoupled strongly nonlinear second-order differential equations
(� ¼ 0 in Eq. (1)), is developed. The trial solution in the form of generating solution is formed and
the differential equation of motion (1) is transformed into the system of four first-order
differential equations. The solution of this system of differential equations represents the solution
of Eq. (1). The suggested procedure is applied to system with strong cubic nonlinearity of Duffing
type. The two-frequency solution is the Jacobi elliptic function. For the general case, an averaging
procedure for solving such differential equations with small nonlinearity is developed. The
method is used for calculation of the vibration properties of a rotor system with pure cubic
nonlinearity and small nonlinearity of van der Pol type.
2. Generating solution

For the case when the small nonlinearity is neglected and � ¼ 0; the differential equation (1)
transforms to

€z þ f ðz; _zÞ ¼ 0; (4)

where f ðz; _zÞ ¼ f 1ðx; _xÞ þ if 2ðy; _yÞ: It is a strongly nonlinear differential equation. By separating
the real and imaginary parts of the differential equation (4) and substituting z ¼ x þ iy into (3) the
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following two independent differential equations are obtained:

€x þ f 1ðx; _xÞ ¼ 0; xð0Þ ¼ x0; _xð0Þ ¼ _x0; (5)

€y þ f 2ðy; _yÞ ¼ 0; yð0Þ ¼ y0; _yð0Þ ¼ _y0: (6)

The solutions of the equations are independent, and have the form

x ¼ xðt;A; aÞ; y ¼ yðt;B;bÞ; (7)

where t is time, ðA; aÞ are parameters which depend on the initial conditions (5), and ðB;bÞ are
parameters which depend on the initial conditions (6). Specifically, A and B are the
initial amplitudes, and a and b are the initial phase angles. In spite of the fact that (4) is a
strongly nonlinear differential equation, the generating solution is a superposition of
solutions (7), i.e.,

z ¼ xðt;A; aÞ þ iyðt;B;bÞ: (8)

It represents the closed form solution of Eq. (4) which satisfies constraint (2).

3. Trial solution

Based on the generating solution the trial solution is formed. The following constraints are
introduced:
1.
 The trial solution has the form of the generating solution and it is

z ¼ xðt;AðtÞ; aðtÞÞ þ iyðt;BðtÞ; bðtÞÞ; (9)

where AðtÞ; aðtÞ and BðtÞ; bðtÞ are time variable functions. Solution (9) has to satisfy the
differential equation (1) with limitation (2).
2.
 The first time derivative of (9) has the form of the first time derivative of the generating solution
(8) where A; a; B; and b are supposed to have constant values

_z ¼
qxðt;AðtÞ; aðtÞÞ

qt
þ i

qyðt;BðtÞ; bðtÞÞ
qt

: (10)

The additional terms which exist due to the fact that AðtÞ; aðtÞ and BðtÞ;bðtÞ are time dependent
give us a new relation

_A
qx

qA
þ _a

qx

qa

� �
þ i _B

qy

qB
þ _b

qy

qb

� �
¼ 0: (11)
3.
 The time derivative of (10) is

€z ¼
d

dt

qxðt;AðtÞ; aðtÞÞ
qt

þ i
qyðt;BðtÞ;bðtÞÞ

qt

� �
: (12)
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Substituting solution (9) the corresponding time derivatives (10) and (12) into (1) lead to

_A
q
qA

þ _a
q
qa

� �
qx

qt

� �
þ i _B

q
qB

þ _b
q
qb

� �
qy

qt

� �
¼ �f1 þ i�f2; (13)

where fp � fpðx; y; qx=qt; qy=qtÞ; p ¼ 1; 2:
On separating the real and imaginary parts in (11) and (13) and after some transformation, the

following four first-order differential equations are obtained:

_A ¼ �Reðf1 þ if2Þ=
q
qA

�
qx

qA

�
qx

qa

� �
q
qa

� �
qx

qt

� �� �
;

_a ¼ ��Reðf1 þ if2Þ=
qx

qa

�
qx

qA

� �
q
qA

�
q
qa

� �
qx

qt

� �� �
;

_B ¼ � Imðf1 þ if2Þ=
q
qB

�
qy

qB

�
qy

qb

� �
q
qb

� �
qy

qt

� �� �
;

_b ¼ �� Imðf1 þ if2Þ=
qy

qa

�
qy

qB

� �
q
qB

�
q
qb

� �
qy

qt

� �� �
: ð14Þ

By solving Eqs. (14) the functions AðtÞ; aðtÞ;BðtÞ;bðtÞ are determined, i.e., the exact solution (9).
Unfortunately, obtaining the closed form solution of system (14) is usually impossible. Some
approximation has to be introduced. As the motion is periodic it means that the solutions are also
periodic functions. At this point it is convenient to introduce the averaging of Eqs. (14). Solutions
of the averaged first-order differential equations represent the approximate solution of the
differential equation (1).
4. Strongly nonlinear Duffing equation

Let us consider a special case of the differential equation (1) where the strong nonlinearity is of
Duffing type. The differential equation is

€z þ b1z þ b3
z þ z�

2

� �3

�
z � z�

2

� �3
 !

¼ �ðf1 þ ifÞ2: (15)

The generating solution of the generating equation

€z þ b1z þ b3
z þ z�

2

� �3

�
z � z�

2

� �3
 !

¼ 0 (16)

is

z ¼ A cnðo1t þ a;m1Þ þ iB cnðo2t þ b;m2Þ; (17)
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where cn is the Jacobi elliptic function [10] with frequency o1 and o2; and modulus m1

and m2; respectively. Substituting (17) into (16) and separating the real and imaginary
part we obtain

o2
1 ¼ b1 þ b3A2; m1 ¼

b3A2

2o2
1

;

o2
2 ¼ b1 þ b3B2; m2 ¼

b3B2

2o2
2

; ð18Þ

where due to the initial values the arbitrary parameters A;B; a; and b satisfy the relations

x0 ¼ A cn a;
b3A2

2ðb1 þ b3A2Þ

� �
; y0 ¼ B cn b;

b3B2

2ðb1 þ b3B2Þ

� �
;

_x0 ¼ �A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b3A2

q
sn a;

b3A2

2ðb1 þ b3A2Þ

� �
dn a;

b3A2

2ðb1 þ b3A2Þ

� �
;

_y0 ¼ �B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b3B2

q
sn b;

b3B2

2ðb1 þ b3B2Þ

� �
dn b;

b3B2

2ðb1 þ b3B2Þ

� �
: ð19Þ

The functions sn and dn are also Jacobi elliptic functions [10].
The trial solution is according to (17)

z ¼ AðtÞcnðc1;m1Þ þ iBðtÞcnðc2;m2Þ � A cn1 þ iB cn2; (20)

where cn1 � cnðc1;m1Þ; cn2 � cnðc2;m2Þ; c1 ¼
R t

0 o1 dt þ aðtÞ; m1 � m1ðtÞ; c2 ¼
R t

0 o2 dt þ bðtÞ;
m2 � m2ðtÞ: Applying the suggested procedure the four first-order differential equations which
correspond to the differential equation (15) are

_A ¼
� cn1c Reðf1 þ if2Þ

cn2
1cðo1 þ Ao0

1Þ þ Ao1m0
1 cn1c cn1cm � o1cn1ccðcn1 þ Am0

1 cn1mÞ
;

A_a ¼
�ðcn1 þ Am0

1 cn1mÞReðf1 þ if2Þ

cn2
1cðo1 þ Ao0

1Þ þ Ao1m0
1 cn1c cn1cm � o1 cn1ccðcn1 þ Am0

1 cn1mÞ
;

_B ¼
� cn2c Imðf1 þ if2Þ

cn2
2cðo2 þ Bo0

1Þ þ Bo2m0
2 cn2c cn2cm � o2 cn2ccðcn2 þ Bm0

2 cn2mÞ
;

B _b ¼
�ðcn2 þ Am0

2 cn2mÞ Imðf1 þ if2Þ

cn2
2cðo2 þ Bo0

1Þ þ Bo2m0
2 cn2c cn2cm � o2 cn2ccðcn2 þ Bm0

2 cn2mÞ
; ð21Þ

where ð.Þ0 � q=qA; ðcnÞc ¼ qðcnÞ=qc is the derivative with respect to the argument, and ðcnÞm ¼

qðcnÞ=qm is the derivative with respect to the modulus.
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The averaged differential equations are

_A ¼ /
� cn1c Reðf1 þ if2Þ

cn2
1cðo1 þ Ao0

1Þ þ Ao1m0
1 cn1c cn1cm � o1 cn1ccðcn1 þ Am0

1 cn1mÞ
S;

A_a ¼ �/
�ðcn1 þ Am0

1 cn1mÞReðf1 þ if2Þ

cn2
1cðo1 þ Ao0

1Þ þ Ao1m0
1 cn1c cn1cm � o1 cn1ccðcn1 þ Am0

1 cn1mÞ
S;

_B ¼ /
� cn2c Imðf1 þ if2Þ

cn2
2cðo2 þ Bo0

1Þ þ Bo2m0
2 cn2c cn2cm � o2 cn2ccðcn2 þ Bm0

2 cn2mÞ
S;

B _b ¼ �/
�ðcn2 þ Am0

2 cn2mÞ Imðf1 þ if2Þ

cn2
2cðo2 þ Bo0

1Þ þ Bo2m0
2 cn2c cn2cm � o2 cn2ccðcn2 þ Bm0

2 cn2mÞ
S; ð22Þ

where / 
S ¼
R 4K1ðm1Þ

0

R 4K2ðm2Þ

0 ð
Þdc1 dc2 and K1ðm1Þ and K2ðm2Þ are the complete elliptic
integrals of the first kind [10].

For the special case when the nonlinearity is of the pure cubic type ðb1 ¼ 0Þ; the modulus of the
Jacobi elliptic functions is constant and has the value m1 ¼ m2 ¼

1
2
: The frequency parameter is

o1 ¼ A
ffiffiffiffiffi
b3

p
and o2 ¼ B

ffiffiffiffiffi
b3

p
; respectively. Then, the first-order differential equations (22) are

simplified to

_A ¼
� cn1c Reðf1 þ if2Þ

A
ffiffiffiffiffi
b3

p
ð2cn2

1c � cn1cc cn1Þ
;

A_a ¼
� cn1 Reðf1 þ if2Þ

A
ffiffiffiffiffi
b3

p
ð2cn2

1c � cn1cc cn1Þ
;

_B ¼
� cn2c Imðf1 þ if2Þ

B
ffiffiffiffiffi
b3

p
ð2cn2

2c � cn2cc cn2Þ
;

B _b ¼ �
� cn2 Imðf1 þ if2Þ

B
ffiffiffiffiffi
b3

p
ð2cn2

2c � cn2cc cn2Þ
; ð23Þ

where the arguments are c1 ¼
R t

0 A
ffiffiffiffiffi
b3

p
dt þ aðtÞ and c2 ¼

R t

0 B
ffiffiffiffiffi
b3

p
dt þ bðtÞ:

When the strong nonlinearity is zero ðb3 ¼ 0Þ we obtain o1 ¼ o2 ¼ o ¼
ffiffiffiffiffi
b1

p
; a value which is

independent of the initial conditions, and m1 ¼ m2 ¼ 0: The elliptic function cn transforms to a
circular function (cos). The four first-order differential equations (21) transform to

_A ¼ �� sinc1 Reðf1 þ if2Þ; A_a ¼ � cosc1 Reðf1 þ if2Þ;

_B ¼ �� sinc2 Imðf1 þ if2Þ; B _b ¼ � cosc2 Imðf1 þ if2Þ; ð24Þ

where c1 ¼
R t

0 odt þ aðtÞ; c2 ¼
R t

0 odt þ bðtÞ; and f1 and f2 are functions of x ¼ A cosc1; y ¼

B cosc2; _x ¼ �oA sinc1; and _y ¼ �oB sinc2: Introducing the averaging procedure the following
four first-order differential equations are obtained:

_A ¼ ��/ sinc1 Reðf1 þ if2ÞS; A_a ¼ �/ cosc1 Reðf1 þ if2ÞS;

_B ¼ ��/ sinc2 Imðf1 þ if2ÞS; B _b ¼ �/ cosc2 Imðf1 þ if2ÞS; ð25Þ

where / 
S �
R 2p
0

R 2p
0 ð
Þdc1 dc2:
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5. Example: small nonlinearity of van der Pol type

Let us consider an example when the strong nonlinearity is of pure cubic type and the small
nonlinearity is of van der Pol type. The mathematical model is

€z þ b3
z þ z�

2

� �3

�
z � z�

2

� �3
 !

¼ �_z½1� pðzz�Þ�; (26)

where p is a constant parameter. According to (23), the first-order differential equations of motion
are

_A ¼ �Að1� pA cn2
1 � pB cn2

2Þ sn
2
1 dn

2
1; (27)

A_a ¼ � sn1 cn1 dn1 Að1� pA cn2
1 � pB cn2

2Þ; (28)

_B ¼ _�Bð1� pA cn2
1 � pB cn2

2Þ sn
2
2 dn2

2; (29)

B _b ¼ � sn2 cn2 dn2 Bð1� pA cn2
1 � pB cn2

2Þ: (30)

Averaging Eqs. (28) and (30) and integrating them for the initial conditions

að0Þ ¼ a0; bð0Þ ¼ b0; (31)

the solutions are a ¼ a0 ¼ const:; b ¼ b0 ¼ const:
Averaging the Eqs. (27) and (29) the following coupled differential equations are obtained:

_A

�A
¼ a � pbA2

þ pacB2;
_B

�B
¼ a � pbB2

þ pacA2; (32)

where a ¼ /sn2
1 dn

2
1S ¼ /sn2

2 dn
2
2S; b ¼ /sn2

1 cn
2
1 dn

2
1S ¼ /sn2

2 cn
2
2 dn

2
2S; c ¼ /cn2

1S ¼ /cn2
2S:

Eliminating the variable B in the system of differential equations (32) the following differential
equation is obtained:

€A þ _A
2
f ðAÞ þ � _AgðAÞ þ �2hðAÞ ¼ 0; (33)

where

f ðAÞ ¼ �
1

A
1�

2b

ac

� �
; gðAÞ ¼ �2

2b

c
þ a

� �
þ 2pA2 b þ

2b2

ac
� ac

� �
;

hðAÞ ¼ 2A2 aða � pbA2
Þ þ pA2 a2c � ab �

2b

c

� �
� p2A4b a �

b2

ac

� �	 

: ð34Þ

The differential equation (33) is a second-order Abel equation. Neglecting the �2 terms of second-
order small value �2 and introducing the new function yðAÞ ¼ _AðtÞ into (33) leads to the first-order
differential equation

dy

dA
þ f ðAÞy ¼ ��gðAÞ; (35)
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i.e.,

_A ¼ �
a

b
ð2b þ acÞA � �pA3 ð2b þ acÞb � a2c2

b þ ac
: (36)

Integrating relation (36) for the initial condition Að0Þ ¼ A0; we have

A

A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa2A2

0 � a1

pa2A2 � a1

s
¼ expð�a1tÞ; (37)

i.e.,

A ¼
A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ðpa2A2
0=a1ÞÞ expð�2�a1tÞ þ ðpa2A2

0=a1Þ

q ; (38)

where

a1 ¼
að2b � acÞ

b
; a2 ¼

ð2b � acÞb þ a2c2

b � ac
: (39)

Eliminating the variable A in (32) and using the previously assumed calculating procedure, we
obtain

B ¼
B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ðpa2B2
0=a1ÞÞ expð�2�a1tÞ þ ðpa2B2

0=a1Þ

q : (40)

To present the correctness of the suggested analytical procedure a numerical example is
considered. Let us assume that the parameters in the differential equation (26) are b3 ¼ 1; p ¼ 1
and � ¼ 0:01: For the initial conditions Að0Þ ¼ A0 ¼ 0:1; Bð0Þ ¼ B0 ¼ 0:2; að0Þ ¼ a0 ¼ p=3; and
bð0Þ ¼ b0 ¼ p=6 using relations (31), (38), and (40) the analytical solutions xA � t and yA � t are
plotted in Fig. 1. In the same figure the numerical solutions xN � t and yN � t of Eq. (26) obtained
by applying the Runge–Kutta procedure are plotted. The solutions are compared. It is evident
that the difference between the analytical and numerical solutions is negligible for small parameter
values.

Analyzing Eqs. (38) and (40) it is concluded that
(1)
 for ð1� ðpa2A2
0=a1ÞÞ40 and ð1� ðpa2B2

0=a1ÞÞ40 the amplitudes A and B increase to a limit
value A ¼ B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1=pa2

p
:

(2)
 for ð1� ðpa2A2
0=a1ÞÞo0 and ð1� ðpa2B2

0=a1ÞÞo0 the amplitudes A and B decrease to the same
limit value. This limit value is constant and independent of the initial amplitude.
(3)
 for the initial amplitudes, which satisfy the relations ð1� ðpa2A2
0=a1ÞÞ ¼ 0 and ð1�

ðpa2B2
0=a1ÞÞ ¼ 0; the motion is steady state with constant amplitudes and constant and equal

frequencies o1 ¼ o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1b3=pa2

p
: The motion is described as

z ¼

ffiffiffiffiffiffiffi
a1

pa2

r
cn t

ffiffiffiffiffiffiffiffiffi
a1b3

pa2

s
þ a0;

1

2

 !
þ i cn t

ffiffiffiffiffiffiffiffiffi
a1b3

pa2

s
þ b0;

1

2

 !" #
: (41)
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Fig. 1. The time-history diagrams obtained analytically ðxA � t; yA � tÞ and numerically ðxN � t; yN � tÞ:
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This motion is along a closed curve in x � y plane. To illustrate the aforementioned result two
x � y curves for � ¼ 0:01; p ¼ 1; and initial phase angles a0 ¼ p=3 and b0 ¼ p=6 are plotted for
initial amplitudes A0 ¼ B0 ¼ 0:1 when the previous condition (1) is satisfied and for A0 ¼ B0 ¼

0:530745 when condition (3) is satisfied. From Fig. 2 is evident that curve (a) increases and curve
(b) corresponds to the steady-state wise.

For the special case when the initial phases are the same, i.e., a0 ¼ b0 or b0 ¼ a0 þ 2K ; where K
is the complete elliptic integral of the first kind [10], the motion is periodic and is along a line;
namely

y ¼ x ¼ 


ffiffiffiffiffiffiffi
a1

pa2

r
cn t

ffiffiffiffiffiffiffiffiffi
a1b3

pa2

s
þ a0;

1

2

 !
: (42)

(The upper sign is for the first initial phase, and the lower for the second initial condition.)
For the case when b0 ¼ a0 þ K or b0 ¼ a0 þ 3K ; the motion is along a symmetric closed curve

y2

ða1=pa2Þ
þ

x2 � ða1=pa2Þ

x2 þ ða1=pa2Þ
¼ 0: (43)

The mathematical model (26) describes the free vibrations of a symmetric nonlinear shaft-disc
system (rotor). Comparing the steady-state motion of the center of the rotor with strong
nonlinearity considered in this paper and the rotor with linear properties (see [11]) it can be
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Fig. 2. The x–y diagram for (26) with b3 ¼ 1; p ¼ 1; � ¼ 0:01; initial phases a0 ¼ p=3; b0 ¼ p=3; and initial amplitudes:

(a) A0 ¼ B0 ¼ 0:1; (b) A0 ¼ B0 ¼ 0:530745:
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concluded that in the both cases the trajectories of the rotor center are closed curves, but their
shapes differ.
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